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In this paper, a national-wide study is conducted to investigate the impacts of COVID-19 on
the public transit ridership in the top twenty metropolitan areas in the U.S. At first, COVID-
19 composite index was developed to qualitatively measure the level of public fear toward
COVID-19 in different metropolitan areas. After that, to analyze the impact of COVID-19
and some socioeconomic factors on transit ridership reduction during the COVID-19 pan-
demic, a random-effects panel data model was developed and the traditional correlation
analysis was also conducted. According to the results of both analyses, it was found that
the areas with higher median household income, a higher percentage of the population
with a Bachelor’s degree or higher, higher employment rate, and a higher percentage of
the Asian population are more likely to have more reductions in public transit ridership
during the COVID-19 pandemic. On the other side, the areas with a higher percentage of
the population in poverty, and a higher percentage of the Hispanic population are more
likely to experience smaller reductions in public transit ridership.
� 2022 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

The widespread COVID-19 has led to profound impacts on our society, economy, and transportation systems. It has the-
atrically altered public travel behavior worldwide and posed a great challenge for public transportation operations
worldwide.

According to Transit Data collected from public transit agencies in April 2020, the ridership levels across all public transit
modes have been decreased by 73% in the United States, especially the light rail mode has been reduced by nearly 90%
(Transitapp, 2020; EBP, 2021). The sharp decline in the number of passengers will affect the operation of public transit
and tighten the funding sources. Meanwhile, public transit is critical for citizens to access essential services such as food
or medical services and it will remain at the core of transport systems that keep people moving and keep our cities running.
Therefore, understanding the impacts of COVID-19 on public transit ridership will be critical for transportation planning to
make the right decisions for maintaining safe and effective public transit services under such special circumstances. Some
previous studies have conducted regional-specific analyses of the impacts of COVID-19 on the ridership of a particular transit
system (Hu and Chen, 2021; Wilbur et al., 2021; and Brough et al., 2020). A national-wide study is needed to investigate the
impacts of COVID-19 in different metropolitan areas across the U.S. In addition, most existing studies simply used COVID-19
confirmed cases and(or) confirmed deaths as indexes in their analysis. A composite index that can better measure the level of
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public fear toward COVID-19 of an area or the level of public fear toward COVID-19 needs to be used for the model devel-
opment. Furthermore, previous studies have found that the magnitude of impacts of COVID-19 varied across different
socioeconomic groups (Hu and Chen, 2021; Wilbur et al., 2021; and Brough et al., 2020). Thus, the equity problem caused
by COVID-19 needs to be further investigated based on nationwide data. To fill these gaps, this research is to investigate
the impacts of COVID-19 on the public transit ridership in the top twenty metropolitan areas in the U.S. To this end, the fol-
lowing specific research objectives have been set up:

(1) Develop a COVID-19 composite index that can quantitatively measure the level of public fear toward COVID-19 in an
area.

(2) Develop an advanced mathematical model to analyze the impacts of COVID-19 and some socioeconomic factors on
transit ridership reduction during the COVID-19 pandemic.

This study is among the first research to use a COVID-19 composite index in modeling the impacts of COVID-19 on public
transit ridership change. In this study, we collected and analyzed the public transit (bus and light rail) ridership data for the
top twenty metropolitan areas in the United States. Through a comprehensive literature review, the reasons for transit rid-
ership decline and the impacts of COVID-19 on different sociodemographic groups are discussed. After that, an panel data
model was developed to identify the factors that affect the public transit ridership reduction during the COVID-19 pandemic.
Finally, conclusions are provided.
Background and literature review

It is been over one year since the outbreak of COVID-19, a number of studies have been conducted on the impact of
COVID-19 on public transit ridership in different aspects. Based on the review of these existing studies, the following three
topics are discussed: (1) transit ridership decline and reasons, (2) impacts of COVID-19 on different sociodemographic
groups, and (3) methodology for analyzing the impact of COVID-19 on public transit ridership.

Transit ridership decline and reasons

Declines in transit ridership during the COVID-19 pandemic have been observed across the world (Transitapp, 2020; EBP,
2021; WMATA, 2020). For example, in Washington DC, Metrorail ridership was declined at a maximum of 90%, and bus rid-
ership was declined at a maximum of 75%, subway ridership decreased by 77%, compared with the transit ridership in 2019
(WMATA, 2020). In Britain, the COVID-19 outbreak has led to a 90% drop in rail travel and 94% and 83% reductions in tube
and bus journeys in London respectively (Carrington, 2020). Averagely, the COVID-19 pandemic has caused a 72.4% reduc-
tion in ridership for 95% of stations in Chicago Hu and Chen (2021). Various factors on both the demand side and supply side
cause the sharp drop in transit ridership during the COVID-19 pandemic.

Demand-side reasons

On the demand side, first, the lockdown and stay-at-home orders abruptly cut the trips in many cities (Wibur et al., 2020).
Second, during the pandemic, many businesses allow their employees to work at home and many schools provide virtual
learning options to their students, which further reduced the demand for work-related trips. Third, since public transit
involves collectively moving a group of passengers in an enclosed space, it may increase the risk of COVID-19 transmission
(Zheng et al., 2020). To minimize exposure to risky environments, travelers intensively avoid riding public transit. They
shifted from public transit to passenger cars and other modes. For example, in the early days of the pandemic, the fears
of infection may have spurred car purchases in New York City and the car travel was quicker to recover than any form of
public transit during the pandemic (Penney, 2021). Also, Capgemini Research Institute has conducted a survey of 11,000 con-
sumers from 11 countries and found that 46% of respondents plan to use their car more frequently and make less use of pub-
lic transport (Winkler et al., 2020). Furthermore, Teixeira and Lopes (2020) found that ‘‘there is some evidence of transit
users shifting to the shared bike programs” in New York City.

Supply-side reasons

On the supply side, due to the social distancing directives and other safety protocols to prevent the spread of coronavirus,
and public transit agencies have to reduce their service capacity. For example, to keep social distance, all public transit agen-
cies reduced vehicle capacity from 25% to 75% to keep passengers at least 6 feet distance from each other. For example, Hous-
ton reduced 50% by tagging the other seats as unavailable (see Fig. 1). New York, Washington DC, Phoenix, Minneapolis and
Baltimore reduced 75% capacity; St. Louis reduced 25% capacity (MTA, 2020;WMATA, 2020; VMTS, 2020; Minneapolis Metro
Transit, 2020; Maryland Transit Administration, 2020). In addition, during the pandemic, due to the insufficient transit work-
force, the sharp drop in fare revenue, and the strengthening of cleaning procedures, many transit agencies reduced their ser-
vice hours and routes, and keep essential functions only (DeWeese et al., 2020). For example, Los Angeles trimmed service by
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Fig. 1. Placards on Bus for Keeping Social Distancing (Source: METRO, 2020).
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about 10% (Los Angeles County MTA, 2020). By mid-April 2020, King County Metro had made three rounds of service adjust-
ments and was operating 27% fewer service trips than its typical weekday service (Switzer, 2020). The reduced service
caused longer waiting times at transit stations and more crowded buses/trains for some transit lines, which will cause fur-
ther ridership reduction and more trip shifts from public transit to other modes.

Other factors

Some other unobserved factors like government policies and vaccination rates may also contribute to the change of the
public transit ridership. For example, as COVID vaccination becomes widespread, there is a recovering trend in public transit
ridership (George et al., 2021). In addition, mandatory mask order and mask compliance rates may also affect the public tran-
sit ridership. These factors need to be investigated when more data become available.

Impacts of COVID-19 on different sociodemographic groups

Research has shown that the impacts of COVID-19 on public transit are different among different sociodemographic
groups due to the different abilities of different groups of individuals to adjust their travel behavior in the face of the chal-
lenges of pandemic and various changing policies (Brough et al., 2020). For example, the people who work in information,
management, and technology-related positions are more likely to be able to work from home while the people who need to
be present to work in person still need to travel to work (Tan et al., 2020). Survey results indicate that ridership of public
transportation in Santiago reduced by about 30% to 40% for low-income households, while for high-income households,
the reduction of ridership was more than 70% (Tirachini and Cats, 2020). Several studies have found that areas with more
lower-income, lower-educated, and people of color households had fewer declines in the ridership of public transit during
the COVID-19 pandemic. Brough et al. (2020) found that at the initial stage of the pandemic in King County, Washington
State, high-income residents are disproportionately switching from public transportation to cars. However, over time, the
differences in the travel behavior of different socio-economic groups have reduced. It was also found that the travel reduc-
tion is less among less-educated and lower-income individuals even taking into account the model substitution and the
reduction of differentiated public transportation services. Wilbur et al. (2021) found that the high-income areas of Nashville
City showed a reduced transit ridership of more than 19% compared to the low-income areas in that city. Hu and Chen (2021)
found that the ridership of the ‘‘L” train system in Chicago has reduced more in regions with more commercial lands and a
higher proportion of white people, educated, and high-income people, while regions with more employments in trade, trans-
portation, and utility sectors or with more COVID-19 cases/deaths show smaller reductions in ridership.

These previous studies have discussed the underlying causes of the socio-economic gap in the changes in public transit
ridership. First, low-income and historically marginalized groups tend to be more reliant on public transportation. Pucher
and Renne (2003) found that minorities and low-income households account for 63% of transit riders in the United States.
Second, during the pandemic, the essential workers must go to the workplace irrespective of the stay-at-home order. A
recent analysis found that essential workers account for about 36% of total transit passengers in the United States
(TransitCenter, 2021). Most of the essential workers are non-white and have low incomes Hu and Chen (2021). In addition,
the less-educated and lower-income people are relatively incapable of working remotely. The home conditions of the less-
educated and lower-income groups are generally less hospitable for work or study at home due to ‘‘lack of adequate internet
access, space constraints, and limited access to outdoor areas” (Brough et al., 2020).
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Methodologies for analyzing the impact of COVID-19 on public transit ridership

Different types of statistical methods have been used to analyze the impact of COVID-19 on public transit ridership. First,
the traditional correlation analysis method has been used for identifying the factors that are strongly correlated with the
ridership decline of public transit during the pandemic (Wilbur et al., 2021). Correlation analysis is a good method for quan-
tifying the strength of the linear relationship between a pair of variables. However, it cannot account for the collective effects
of multiple variables. To address this problem, many studies have used the multivariable linear regression in transit ridership
analysis. Ahangari et al. (2020), Brough et al. (2020), and Liu et al. (2020) used the ordinary least squares (OLS) regression
method to analyze the factors that are affecting transit ridership changes during the pandemic. The limitation of the tradi-
tional regression model is that it assumes that all observations are independently and normally distributed, which may not
always be true. Therefore, advanced methods have been used. For example, Hu and Chen (2021) used the partial least
squares regression to model the impacts of various factors such as land use, COVID-19 virus-related, socioeconomic, and
transit service on the ridership reduction. The partial least squares regression is good for addressing the multicollinearity
problem in the regression model. However, there are some gaps in the existing studies.

� First, in order to assess the impact of COVID-19, a quantitative indicator for measuring the level of public fear toward
COVID-19 in an area needs to be developed first. In general, two COVID-19 indexes have been commonly used: confirmed
cases and confirmed deaths. Some studies simply use one of these indexes or use both indexes in their models. Since the
number of confirmed cases or deaths is highly related to the type and population size of an area (a big city tends to have
more cases than a small town), use the absolute number of cases or deaths will affect the model transferability. In addi-
tion, since these two indexes are highly correlated, simply include both two indexes in the model would undermine the
modeling results. Liu et al. (2020) has used the Google search trend index for the keyword ‘‘Coronavirus” to measure pub-
lic awareness and concern about the COVID-19. This measure may be able to reflect the level of public awareness at the
beginning of the pandemic. However, as time goes by, people become more familiar with COVID-19 and its information
resources, the number of searches will decrease. Therefore, a composite index that can better measure the level of public
fear toward COVID-19 of an area needs to be developed.

� Second, in most of the public transit studies, the transit ridership data were collected from different metropolitan areas
during different periods. For example, in Liu et al. (2020), daily transit ridership data were collected from 113 county-
level transit systems in 63 metro areas from February 15th to May 17th, 2020. The observations from the same area
are very likely to be correlated. Therefore, the assumption of the traditional regression model that all observations are
independently distributed may not be held. To address this problem, the panel data modeling approach can be used to
model the cross-sectional observations in different periods.

To fill these two identified gaps, in this study, a composite index was developed to measure the level of public fear toward
COVID-19 in an area and a random-effects panel data model was developed to analyze the impacts of COVID-19 and some
socioeconomic factors on the ridership reduction during the pandemic.

Data description

In this study, we investigated the change of public transit ridership for 1 year from February 1st, 2020 to January 31st,
2021 since the World Health Organization (WHO) issued a global health emergency on January 30th, 2020. Three different
types of data were collected: (1) COVID-19 cases and deaths data during the study time period, (2) public transit ridership
data from February 2019 to January 2021, and (3) sociodemographic data of the selected metropolitan areas during the study
time period. The COVID-19 case and deaths data were collected from USA FACTS official website (USAFACTS, 2020). The rid-
ership data are the monthly public transit ridership data collected by the National Transit Database (NTD) from the Federal
Transit Administration (FTA) (NTD, 2020). The sociodemographic data of the studied metropolitan areas was retrieved from
the American Community Survey (ACS) 1-year estimates data profile (United States Census Bureau, 2019).

The COVID-19 case and deaths data included all COVID-19 the daily confirmed cases by counties and by states. Note that,
since the COVID-19 data is county-based instead of metropolitan-based, in this study, county-based cases and deaths within
each metropolitan area were aggregated to derive the metropolitan-based cases and deaths. For the public transit ridership
data, we focus on the impacts of COVID-19 on the bus and light rail transit modes in the study areas. Different types of buses
were considered, including motorbus (MB), Commuter Bus (CB), and Bus Rapid Transit (RB). The ridership is reported as the
number of unlinked passenger trips, which are defined as the number of passengers who board public transit vehicles. As we
mentioned before, the data was collected for the major transit agencies in the top twenty metropolitan areas based on their
population. These top twenty metropolitan areas along with the major public transit agencies in these areas are presented in
Table 1.

The dependent and independent variables used in this study were presented in Table 2, and the detailed explanations of
these variables are provided in the following sections.
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Table 1
Summary of Studied Metropolitan Areas.

Metropolitan Area Population Major Public Transit Agencies

1 New York-Newark, NY-NJ-CT 19,216,182 Metropolitan Transportation Authority
2 Los Angeles-Long Beach-Anaheim, CA 13,214,799 Los Angeles County Metropolitan Transportation Authority
3 Chicago, IL-IN Chicago 9,457,867 Chicago Transit Authority
4 Miami, FL 6,166,488 Miami-Dade Transit
5 Philadelphia, PA-NJ-DE-MD 6,102,434 Southeastern Pennsylvania Transportation Authority
6 Dallas-Fort Worth-Arlington, TX 7,573,136 Dallas Area Rapid Transit; Trinity Metro
7 Houston, TX 7,066,140 Metropolitan Transit Authority of Harris County
8 Washington, DC-VA-MD 6,280,697 Washington Metropolitan Area Transit Authority
9 Atlanta, GA 6,018,744 Metropolitan Atlanta Rapid Transit Authority
10 Boston, MA-NH-RI 4,873,019 Massachusetts Bay Transportation Authority
11 Detroit, MI 4,319,629 The Detroit Department of Transportation
12 Phoenix-Mesa, AZ 4,948,203 Valley Metro Transit System
13 San Francisco-Oakland, CA 4,731,803 San Francisco Municipal Transportation Agency
14 Seattle, WA 3,979,845 King County Metro; Sound Transit
15 San Diego, CA 3,338,330 San Diego Metropolitan Transit System
16 Minneapolis-St. Paul, MN-WI 3,640,043 Metro Transit
17 Tampa-St. Petersburg, FL 3,194,831 Pinellas Suncoast Transit Authority
18 Denver-Aurora, CO 2,967,239 Regional Transportation District
19 Baltimore, MD 2,800,053 Maryland Transit Administration
20 St. Louis, MO-IL 2,801,423 Metropolitan Saint Louis Transit Agency

Table 2
Dependent and Independent Variables.

Variables Description

Dependent Variable
YoYMRRR Year-on-Year (YoY) monthly ridership reduction rate
Independent Variables
CI COVID-19 Composite Index
Percentage of Poverty Percentage of population under poverty thresholds
MHI Median Household Income
Percentage of H.S. degree or higher Percentage of population with High School degree or higher
Percentage of Bachelor’s degree or higher Percentage of population with Bachelor’s degree or higher
Percentage of Non-English Speaking Percentage of population who are Non-English Speaking
Percentage of Foreign-Born Percentage of the population born in a foreign country
Percentage of Households No Vehicle Percentage of households without a vehicle
Percentage of TakingPublic Transit to Work Percentage of the population takes public transit to work
Employment Rate Percentage of the population employed
Percentage of Hispanic Percentage of the Hispanic population
Percentage of White Percentage of the White population
Percentage of Black Percentage of the Black population
Percentage of Asian Percentage of the Asian population
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Dependent variables

In this study, the dependent variable is Year-on-Year (YoY) monthly ridership reduction rate, which compares the rider-
ship for a given month during the study period with the ridership in the same month of previous years. Take the first month,
February 2020, as an example, the YoY ridership reduction rate of February 2020 can be expressed mathematically as
follows:
YOY Reduction Rate of Feb:2020 ¼ Monthly ridership of Feb:2019�Monthly ridershipo of Feb:2020
Monthly ridership of Feb:2019
The derived YoY reduction rates of transit ridership of different metropolitan areas are presented in Fig. 2. As shown in
this figure, all twenty public transit agencies have experienced a sudden ridership drop since March 2020 and then reached a
stable level. It can be seen that all these areas suffered a 40–85% ridership reduction from March 2020 to April 2020. Among
them, San Francisco-Oakland and Washington are the top two metropolitan areas with the highest ridership reduction rates.
The ridership of New York has the sharpest decline at the beginning of the pandemic and it recovered a little bit and remain
at around 60% YoY reduction rate during the rest of the time. Tampa-St. Petersburg has the relatively lowest ridership reduc-
tion rate at the beginning of the pandemic, but its reduction rate jumped to 70% in January 2021. From Fig. 2, it can be seen
that overall the transit ridership for all areas has been reduced significantly. However, the reduction rate various by time and
area. In this study, we will use mathematical methods to investigate the impacts of COVID-19 on the ridership changes and
other contributing factors to the ridership reduction in different metropolitan areas.
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Fig. 2. YoY reduction rates of transit ridership of the selected metropolitan areas.
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Independent variables

Two types of independent variables are considered in this study: COVID-19 related factors and sociodemographic factors.
The definitions of all the independent variables considered by this study are present in Table 2.

COVID-19 composite index

To analyze the impacts of COVID-19, the level of public fear toward COVID-19 in a particular area need to be quantita-
tively measured at first. In the field of stock market prediction, a CI, also known as the global fear index, has been used in
analyzing how many distortions in the market can be attributed to the pandemic (Khan et al., 2020). Salisu and Akanni
(2020) also constructed a global fear index (GFI) for the COVID-19 pandemic to predict stock returns. Since the CI could pro-
vide a measure of public perceptions toward the pandemic, the COVID-19 CI proposed by Salisu and Akanni (2020) is used as
an independent variable for measuring the level of public fear toward COVID-19 of the selected metropolitan areas in this
study. Specifically, the CI for a metropolitan area i for a given day t can be developed by following three steps:

(i) Reported Cases Index (RCI):
RCIt ¼ ci;t
ci;t þ ci;t�14

� �
� 100 ð1Þ
where ci;t is the new confirmed cases at the current day t for the metropolitan area i; ci;t�14 is the new confirmed cases at
14 days ago for the metropolitan area i. Because COVID-19 symptoms may appear 2–14 days after exposure to the virus
(Centers for Disease Control and Prevention, 2021), this index measures the degree of deviation between the expected cases
of reported cases in the next 14 days and the current reported cases. According to Equation (1), this index is in the range of 0
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to 100, with the highest value representing the highest level of fear toward the pandemic, and the level of fear decreases as
the index approaches 0 (Salisu and Akanni, 2020). Note that, if there are no changes during the past 14 days, this index will
be 50. Similarly, the index for the reported death can also be derived as follows.

(ii) Reported Death Index (RDI):
Table 3
Average

Metr

Atlan
Balti
Bost
Chic
Dalla
Denv
Detr
Hou
Los A
Miam
Minn
New
Phila
Phoe
San
San
Seat
St. L
Tam
Was
RDIt ¼ di;t

di;t þ di;t�14

� �
� 100 ð2Þ
where di;t is the newly reported deaths at day t for the metropolitan area i; di;t�14 is the reported deaths at 14 days ago for the
metropolitan area i . After that, by combining the calculated RCI and RDI, the COVID-19 Composite Index (CI) can be derived
as follows

(iii) Composite Index (CI)
CIt ¼ 0:5 RCIt þ RDItð Þ½ � ð3Þ

For each metropolitan area, the daily CI is calculated. Since the ridership data is monthly based, the daily CI was aggre-

gated to derive the monthly average CI for each metropolitan area. The final CI results for each metropolitan area were pre-
sented in Table 3.

Sociodemographic factors

The sociodemographic factors are area-based, that is to say, these factors vary with different metropolitan areas and
remain the same within different periods. To find the factors affecting transit ridership, sociodemographic data related to
the income, poverty, and education levels, and the racial/ethnic composition of each metropolitan area was obtained from
the American Community Survey (ACS) 1-year estimates data profile (United States Census Bureau, 2019). These data were
presented in Table 4.

Methodology and results

Random effects panel data model

As we mentioned in the literature review part, in this study, the panel data modeling method is used for analyzing the
impacts of COVID-19 on the transit ridership reduction rate and the impacts of other socioeconomic factors.

Panel data refers to observations of the same cross-sectional units observed at multiple time points. A panel-data obser-
vation Xit has two dimensions: i ¼ 1 � � �N denotes the cross-sectional unit and t ¼ 1 � � � T denotes the time period of the
observation. In this study, the data consist of information collected from 20 big metropolitan areas during 12 months. Thus,
it is the panel data with 20 cross-sectional units observed during 12 time periods (N ¼ 20 and T ¼ 12). In general, the panel
data model can be expressed mathematically as follows (Greene, 2000):
yit ¼ ai þ b0Xit þ eit ð4Þ
Monthly CI of the Studied Metropolitan Areas.

opolitan Areas 20-Feb MAR20 APR20 MAY20 JUN20 JUL20 AUG20 SEP20 OCT20 NOV20 DEC20 JAN21

ta, GA 0.00 36.21 60.95 49.57 48.61 58.76 48.44 43.72 49.92 50.18 56.81 53.76
more, MD 0.00 15.96 69.64 50.64 43.44 50.54 48.99 47.29 53.18 61.34 53.46 49.04
on, MA-NH-RI 0.00 34.55 75.46 38.32 38.36 49.70 46.76 54.08 57.98 55.66 48.49 56.43
ago, IL-IN 0.00 44.65 69.97 49.33 39.23 48.38 50.98 49.16 57.95 61.78 47.60 45.49
s-Fort Worth-Arlington, TX 0.00 35.13 59.74 52.58 55.67 59.17 46.65 45.75 53.86 57.11 49.20 57.92
er-Aurora, CO 0.00 18.79 66.53 46.24 35.77 44.17 37.30 51.20 56.06 62.49 44.72 43.77
oit, MI 0.00 41.83 59.41 36.57 43.60 52.71 48.52 45.83 49.23 50.02 38.75 40.35
ston, TX 0.00 19.18 62.90 47.57 64.22 59.47 48.03 41.64 45.92 54.04 50.15 60.45
ngeles-Long Beach-Anaheim, 0.00 40.61 69.96 51.28 52.59 52.35 45.89 44.70 49.87 58.81 61.03 52.76
i, FL 0.00 25.22 63.08 45.12 60.05 60.27 43.83 40.70 50.18 56.46 52.22 52.27
eapolis-St. Paul, MN-WI 0.00 12.37 65.91 59.85 41.35 45.64 51.85 48.23 52.67 56.65 46.97 43.95
York-Newark, NY-NJ-CT 0.00 60.84 60.82 33.93 39.62 43.97 42.00 51.73 57.26 62.06 56.81 54.65
delphia, PA-NJ-DE-MD 0.00 28.63 71.10 46.14 40.91 46.90 44.65 52.67 54.59 60.94 55.72 47.50
nix-Mesa, AZ 0.00 19.14 61.61 52.17 61.53 56.23 35.28 42.89 49.97 56.41 44.20 58.83
Diego, CA 0.00 15.97 56.72 43.35 44.84 42.47 34.82 41.85 43.47 40.19 52.58 46.45
Francisco-Oakland, CA 0.00 32.75 56.74 45.65 49.96 52.74 49.68 46.04 47.95 53.66 57.55 52.83
tle, WA 3.45 84.06 49.95 39.88 51.84 48.39 48.01 31.72 44.29 40.79 22.49 36.50
ouis, MO-IL 0.00 19.30 62.03 48.15 41.61 53.52 49.33 49.54 50.47 58.85 45.35 48.95
pa-St. Petersburg, FL 0.00 22.40 43.51 52.17 63.76 54.81 44.53 43.29 48.77 55.34 53.49 52.06
hington, DC-VA-MD 0.00 28.40 75.97 50.70 39.77 43.61 51.80 49.16 48.83 60.07 55.17 52.74
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Table 4
Sociodemographic Data for the Study Metropolitan Areas.

Percentage
of Poverty

Median
Household Income

Percentage
of Bachelor’s
degree or higher

Percentage of
Non-English
Speaking

Percentage of
Foreign Born

Employment
Rate

Percentage
of Hispanic

Percentage
of white

Percentage
of Black

Percentage
of Asian

New York-Newark, NY-NJ-CT 11.6% 83,160 41.8% 40.0% 29.7% 65.2% 24.6% 46.2% 15.6% 11.3%
Los Angeles-Long Beach-Anaheim, CA 12.4% 77,774 35.5% 54.4% 32.9% 65.5% 45.2% 29.8% 6.3% 16.0%
Chicago, IL-IN Chicago 10.6% 75,379 39.2% 29.4% 17.6% 66.8% 22.3% 52.9% 16.3% 6.5%
Miami, FL 13.5% 60,141 33.1% 55.1% 41.6% 63.6% 45.3% 30.4% 20.2% 2.4%
Philadelphia, PA-NJ-DE-MD 11.8% 74,533 39.0% 16.3% 10.9% 65.6% 9.5% 61.8% 20.4% 6.0%
Dallas-Fort Worth-Arlington, TX 10.5% 72,265 36.3% 32.2% 19.2% 68.8% 28.9% 46.7% 15.4% 6.7%
Houston, TX 12.9% 69,193 33.3% 40.1% 23.4% 66.5% 37.3% 36.3% 16.9% 7.8%
Washington, DC-VA-MD 7.5% 105,659 51.4% 29.6% 22.9% 71.5% 15.8% 45.4% 24.8% 10.2%
Atlanta, GA 10.5% 71,742 39.9% 18.6% 14.2% 67.0% 10.8% 47.2% 33.4% 5.8%
Boston, MA-NH-RI 8.6% 94,430 49.3% 25.2% 19.2% 69.5% 11.2% 70.4% 7.6% 7.9%
Detroit, MI 12.6% 63,474 32.4% 14.2% 10.3% 63.1% 4.4% 66.7% 22.2% 4.3%
Phoenix-Mesa, AZ 12.1% 67,896 32.2% 26.5% 14.3% 63.4% 31.0% 57.3% 5.1% 3.8%
San Francisco-Oakland, CA 8.2% 114,696 51.4% 41.3% 30.9% 67.8% 21.9% 40.3% 6.9% 26.0%
Seattle, WA 7.8% 94,027 44.1% 24.8% 19.7% 69.3% 10.1% 64.8% 5.6% 13.4%
San Diego, CA 10.3% 83,985 39.9% 36.7% 22.8% 66.7% 33.9% 46.1% 4.6% 11.8%
Minneapolis-St. Paul, MN-WI 8.2% 83,698 43.2% 14.9% 10.6% 71.6% 5.9% 76.0% 8.6% 6.7%
Tampa-St. Petersburg, FL 12.4% 57,906 31.6% 22.6% 14.4% 60.3% 19.4% 63.0% 11.5% 3.5%
Denver-Aurora, CO 7.9% 85,641 45.8% 20.2% 11.9% 71.5% 23.1% 64.7% 5.5% 4.3%
Baltimore, MD 9.4% 83,160 41.9% 12.8% 10.3% 66.8% 5.9% 56.6% 28.8% 5.7%
St. Louis, MO-IL 9.9% 66,417 35.8% 6.7% 4.8% 65.3% 3.0% 73.8% 18.1% 2.6%
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where yit is the dependent variable, i.e. YoY ridership reduction rate for the metropolitan area i (i ¼ 1 � � �20) during the
month t (t ¼ 1 � � �12); Xit is the vector of independent variables as listed in Table 2; In the panel data model, there are
two types of independent variables: (1) the individual-specific variables which are specific to the individual metropolitan
area i and to be constant over time (during the different months), such as the sociodemographic variables listed in Table 2;
and (2) time-variant variables which will change over time, such as the COVID-19 Composite Index; ai is the individual effect
which is specific to the individual metropolitan area i and to be constant over time; eit is the error term and b are the coef-
ficient vectors for Xit .

In general, they are two types of panel data models: the fixed-effects model and the random-effects model. The random-
effects model assumes that the individual-specific effects ai are distributed independently of the independent variables
while the fixed effects model allows ai being correlated with the independent variables. In the random-effects model, ai

is included as a part of the error term, and in the fixed effects model, ai is included as an individual specific intercept for
the metropolitan area i. The fixed-effects model has the advantage of not requiring ai to be independent with Xit , which
is often difficult to verify. However, the standard fixed-effects model cannot identify the effects of any individual-specific
variables because it requires the within-group variation for model estimation (Qi et al., 2007). The Hausman test can be used
to choose between a fixed-effect model or a random-effect model (Greene, 2000). The null hypothesis is that random-effects
is the favored model and the alternate hypothesis is that fixed-effects is the favored model. In this study, the p-value of the
Hausman test is 0.5526. Since it is greater than the 5% significant level, the null hypothesis cannot be rejected, which indi-
cates that the random-effects model should be selected.

From the independent variables that list in Table 2, it can be seen that some of the sociodemographic factors may be
highly be correlated. For example, the areas with a high percentage of poverty tend to have low median household income
(negative correlated) and the areas that have a high percentage of the non-English speaking population may also have a high
percentage of the foreign-born population (positively correlated). The high correlations between two or more independent
variables will cause the multicollinearity problem in a regression model. To detect multicollinearity, variance inflation fac-
tors (VIF) of the selected independent variables were calculated and the variables with VIF valuable greater than 2.5 were
removed from the model one by one (Johnston et al., 2018). The VIF based multicollinearity analysis results were presented
in Table 5 and it was found that only 4 variables can be included in the model.

After that, according to the P-values of the independent variables from the regression modeling results, the final set of
independent variables that have significant impacts on the dependent variable can be identified and the results of the devel-
oped final random-effects panel data model are presented in Table 6. It can be seen that there are only two independent vari-
ables that are significantly associated with the reduction of transit ridership during the COVID-19 pandemic. They are the
COVID-19 Composite Index (CI) and Percentage of Bachelor’s degree or higher. The Goodness-of-fit indexes R-squared is
0.69197, indicating the random effects regression fitted the data well.

From the modeling results presented in Table 6, it was found that the ridership reduction rate increased as the COVID-19
CI increased, and the areas with a high percentage of the population with a bachelor’s degree or higher tend to have more
transit ridership reductions during the COVID-19 pandemic. More specifically, with all other variables keeping constant, 1
unit increase in COVID-19 CI is associated with 1% more reduction in transit ridership. Similarly, 1% increase of the popula-
tion with a B.S. degree or higher is associated with about 1.06% more reduction in public transit ridership during the COVID-
19 pandemic.

These findings are reasonable and consistent with the findings in the literature. First, the COVID-19 CI measures the level
of fear toward COVID-19 in an area. As the level of such fear increases, the public will avoid using public transit to reduce
their exposure to the COVID-19 risk, thereby reduction of public transit ridership will increase. Second, as we mentioned in
the literature review section, previous studies (Hu and Chen, 2021 and Brough et al., 2020) also found that the transit rid-
ership declined more among the higher educated individuals. The major reason is that individuals with higher education are
less likely to engage in jobs that involve a high physical presence and therefore more likely to be able to work remotely
(Dingel and Neiman, 2020). On the other hand, the less educated individuals are more likely to work in grocery stores, san-
itation, and cleaning, and logistics and are often labeled ‘‘essential” workers who are still required to travel to their place of
work during the pandemic. Therefore, the difference in the percentage of the population with a B.S. degree or higher becomes
a key contributor to the socioeconomic disparities in travel behavior during the pandemic.
Table 5
Selected Independent Variables Based on Multicollinearity Analysis.

Variable VIF

CI 1.001494
Percentage of Bachelor’s degree or higher 1.193229
Percentage of Hispanic 1.327218
Percentage of Black 1.203261
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Table 6
Results of the Random Effects Panel Model.

Variable Coeff.* Std. Error Z value P-value

CI 0.01021119 0.00045213 22.5848 < 2.2e-16
Percentage of Bachelor’s degree or higher 1.05677359 0.22206443 4.7589 1.95E-06
Intercept �0.33264141 0.09184855 �3.6216 0.0002928
R-Squared 0.69197
Adj. R-Squared 0.68937
Chi-squared 532.411 (df = 2); p-value: < 2.22e-16
Sample size 240

Table 7
Correlation Analysis.

Variables Correlation with Dependent Variable P-value

Median Household Income 0.277235844 1.3112E-05
Percent In Poverty �0.210951458 0.00100879
Percentage of Bachelor’s degree or higher 0.287724398 5.89E-06
Percentage of Employment Rate 0.190918186 0.00298175
Percentage of Hispanics �0.157367352 0.01467014
Percentage of Asian 0.171722571 0.00767003
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Correlation analysis

Although the regression model can account for the collective effects of multiple variables, only a few independent vari-
ables can be included in the model and identified as variables having significant impacts on the dependent variable. To fur-
ther investigate the impacts of different independent variables, the traditional correlation analysis method was also used to
further identify the factors that are significantly correlated with the dependent variable. For this purpose, the Pearson cor-
relation coefficients between the independent variables and the dependent variable (i.e. YoY ridership reduction rate) were
calculated and the results are presented in Table 7, where the independent variables that have significant correlations with
the ridership reduction were listed.

From Table 7, it can be seen that six variables are significantly correlated with the public transit ridership reduction dur-
ing the COVID-19. Following are some key findings:

� The median household income, percentage of bachelor’s degree or higher, percentage of employment rate, and percentage
of Asians have positive correlations with the public transit ridership reduction. It means that the areas with higher med-
ian household income, a higher percentage of the population with a Bachelor’s degree or higher, higher employment rate,
and a higher percentage of the Asian population have more reductions in public transit ridership.

� The percent in poverty and percentage of Hispanics have negative correlations with the public transit ridership reduction.
It means that the areas with a higher percentage of the population in poverty, and a higher percentage of the Hispanic
population tend to have less reduction in public transit ridership.

Among these findings, the findings regarding household income are consistent with the findings in the literature. Brough
et al.(2020), Wilbur et al. (2021), and Hu and Chen (2021) all found that the transit ridership in high-income areas has
dropped more than in low-income areas during the COVID-19 pandemic.
Conclusion

In this study, a national-wide study is conducted to investigate the impacts of COVID-19 on the public transit ridership in
the top twenty metropolitan areas in the US. At first, the reasons for the ridership decline during the COVID-19 pandemic
were discussed based on the findings from the literature. After that, a COVID-19 composite index was developed to quali-
tatively measure the level of public fear toward COVID-19 in different metropolitan areas. Next, a random-effects panel data
model was developed to analyze the impacts of COVID-19 and some socioeconomic factors on transit ridership reduction
during the COVID-19 pandemic. In addition, correlation analysis was conducted to further analyze the impacts of the iden-
tified socioeconomic factors.

Key findings

According to the results of this study, the following key findings can be obtained:
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� The transit ridership for all areas has been reduced significantly, but the reduction rate varies by time and area.
� The level of public fear toward COVID-19 of a metropolitan area has significant impacts on its public transit ridership
reduction. Specifically, 1 unit increase in COVID-19 CI is associated with 1% increase in the reduction of transit ridership.

� For different socioeconomic groups, the changes in transit ridership during the COVID-19 pandemic are different:
o Areas with a high percentage of the population with a bachelor’s degree or higher tend to have more transit ridership

reductions. Specifically, 1% increase of the population with a B.S. degree or higher is associated with about 1.06%
increase in the reduction of public transit ridership.

o Areas with higher median household income, higher employment rate, and a higher percentage of the Asian popula-
tion are more likely to have more reductions in public transit ridership.

o Areas with a higher percentage of the population in poverty, and a higher percentage of the Hispanic population are
more likely to experience smaller reductions in public transit ridership.

Policy implications

The findings of this study can help public transit agencies and local transportation planning organizations better under-
stand the causes and patterns of changes in public transit ridership during the pandemic. Note that, the developed model can
be applied to predict the transit ridership for any area of any size because all the dependent and independent variables (in-
cluding the COVID-19 composite index) used in the model have relative values instead of absolute values. Based on the pre-
dicted ridership change, the transit agencies can adjust their service by adding more service in the area where more
population depends on the public transit while reducing their service in the areas where a high proportion of the population
can choose to work from home or shift to other transportation modes. In addition, the local government can also allocate
more public transit funding to the areas where a higher percentage of the population depends on public transit to better
accommodate their travel needs during the pandemic. Overall, the results of the study can help the public transit agencies
and local transportation planning organizations make the right decisions to fully consider both equity and efficiency issues in
the public transit system during the pandemic.

Limitations and future study needs

There are several limitations of this study. First, there are some other unobserved factors like government policies and
vaccination rates, that may also contribute to the change of public transit ridership. In the future, more data need to be col-
lected to consider the impacts of the vaccination rate and other factors on the recovery of public transit ridership. Second, the
data in this study was collected at an aggregated metropolitan-area level which makes it hard to differentiate the signifi-
cance of the socioeconomic factors. In the future, more disaggregated data need to be collected to further investigate the
impacts of socioeconomic factors. Furthermore, this study only analyzed the top 20 metropolitan areas in the US. In the
future, data from more metropolitan areas need to be collected to improve the results of this study.
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